首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9651篇
  免费   2568篇
  国内免费   1011篇
化学   6789篇
晶体学   175篇
力学   72篇
综合类   62篇
数学   43篇
物理学   6089篇
  2024年   5篇
  2023年   85篇
  2022年   201篇
  2021年   259篇
  2020年   364篇
  2019年   281篇
  2018年   283篇
  2017年   279篇
  2016年   435篇
  2015年   476篇
  2014年   560篇
  2013年   991篇
  2012年   646篇
  2011年   682篇
  2010年   556篇
  2009年   625篇
  2008年   627篇
  2007年   754篇
  2006年   743篇
  2005年   565篇
  2004年   503篇
  2003年   479篇
  2002年   393篇
  2001年   363篇
  2000年   292篇
  1999年   236篇
  1998年   213篇
  1997年   208篇
  1996年   169篇
  1995年   165篇
  1994年   147篇
  1993年   122篇
  1992年   87篇
  1991年   62篇
  1990年   66篇
  1989年   42篇
  1988年   45篇
  1987年   38篇
  1986年   40篇
  1985年   26篇
  1984年   32篇
  1983年   6篇
  1982年   14篇
  1981年   19篇
  1980年   14篇
  1979年   4篇
  1978年   10篇
  1975年   5篇
  1973年   5篇
  1970年   2篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
101.
Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m2 g−1) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g−1 and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g−1 dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g−1 dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.  相似文献   
102.
The present work describes an exciting method for the selective and sensitive determination of calcitonin in human blood serum samples. Adopting the surface molecular imprinting technique, a calcitonin-imprinted polymer was prepared on the surface of the zinc oxide nanostructure. Firstly, a biocompatible tyrosine derivative as a monomer was grafted onto the surface of zinc oxide nanostructure followed by their polymerization on vinyl functionalized electrode surface by activator regenerated by electron transfer–atom transfer radical polymerization (ARGET–ATRP) technique. Such sensor can predict the small change in the concentration of calcitonin in the human body and it may also consider to be as cost-effective, renewable, disposable, and reliable for clinical studies having no such cross-reactivity and matrix effect from real samples. The morphologies and properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry and chronocoulometry. The linear working range was found to be 9.99 ng L−1 to 7.919 mg L−1 and the detection limit as low as 3.09 ± 0.01 ng L−1 (standard deviation for three replicate measurements) (S/N = 3).  相似文献   
103.
Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.  相似文献   
104.
The CAN‐catalyzed aerobic oxidation severed the C=C bond selectively through the single electron transfer mechanism, giving a green method to decompose olefins. Compared with the literature reported examples, this method required simple catalyst, cheap, abundant and clean oxidant and was very safe to operate due to the mild conditions.  相似文献   
105.
In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.  相似文献   
106.
This paper introduces a simple model for prediction of one electron reduction potential [E(RNO2/R ? NO2)] of various nitroaryl compounds. The new method uses energy difference between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in gas phase at the B3LYP/6‐311++G** level (ΔEHOMO‐LUMO) and some structural parameters. It was used for 35 nitroaryl compounds including nitrobenzenes, nitrofurans, 2‐nitroimidazoles, 4‐nitroimidazoles, 5‐ninuintidazoles, nitroazaindoles, nitroacridines, and miscellaneous nitroaryl compounds. The root mean square (rms) percent deviation and the average absolute error of predictions of E(RNO2/R ? NO2) relative to experiment were decreased from 12.4 % and 0.42 V to 3.5 % and 0.11 V, respectively, upon consideration of several structural parameters. Increment of the value of ΔEHOMO‐LUMO and inclusion of specific polar groups can increase thermodynamic stability of these compounds.  相似文献   
107.
We apply Löwdin's canonical orthogonalization method to investigate the linearly dependent problem arising from the variational calculation of atomic systems using Slater‐type orbital configuration‐interaction (STO‐CI) basis functions. With a specific arithmetic precision used in numerical computations, the nonorthogonal STO‐CI basis is easily linearly dependent when the number of basis functions is sufficiently large. We show that Löwdin's canonical orthogonalization method can successfully overcome such problem and simultaneously reduce the dimension of basis set. This is illustrated first through an S‐wave model He atom, and then the real two‐electron atoms in both the ground and excited states. In all of these calculations, the variational bound state energies of the two‐electron systems are obtained in reasonably high accuracy using over‐redundant STO‐CI bases, however, without using extended high‐precision technique. © 2015 Wiley Periodicals, Inc.  相似文献   
108.
We examine two formulations for the differential surface excitation parameter (DSEP): one provided by Tung et al. and the other given by the Chen–Kwei position‐dependent differential inverse inelastic mean free path integrated over the electron trajectory. We demonstrate that the latter converges to the former provided that the dielectric function of the solid does not depend on the momentum transfer or it depends on just the momentum transfer component parallel to the surface. Tung's DSEP represents therefore an approximation to the Chen–Kwei DSEP calculated for a dielectric function with no restrictions on the momentum dependence. The approximation is shown to work in the limit of small momentum transfer and to imply an error of 4%–5% for electrons traveling through the solid with energy E = 1 keV. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
109.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
110.
The electrophilic N‐trifluoromethylation of MeCN with a hypervalent iodine reagent to form a nitrilium ion, that is rapidly trapped by an azole nucleophile, is thought to occur via reductive elimination (RE). A recent study showed that, depending on the solvent representation, the SN2 is favoured to a different extent over the RE. However, there is a discriminative solvent effect present, which calls for a statistical mechanics approach to fully account for the entropic contributions. In this study, we perform metadynamic simulations for two trifluoromethylation reactions (with N‐ and S‐nucleophiles), showing that the RE mechanism is always favoured in MeCN solution. These computations also indicate that a radical mechanism (single electron transfer) may play an important role. The computational protocol based on accelerated molecular dynamics for the exploration of the free energy surface is transferable and will be applied to similar reactions to investigate other electrophiles on the reagent. Based on the activation parameters determined, this approach also gives insight into the mechanistic details of the trifluoromethylation and shows that these commonly known mechanisms mark the limits within which the reaction proceeds. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号